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Abstract

We show a polynomial time quantum algorithm for solving the learning with errors problem
(LWE) with certain polynomial modulus-noise ratios. Combining with the reductions from lattice
problems to LWE shown by Regev [J.ACM 2009], we obtain polynomial time quantum algorithms
for solving the decisional shortest vector problem (GapSVP) and the shortest independent vector
problem (SIVP) for all n-dimensional lattices within approximation factors of Q(n*®). Previously,
no polynomial or even subexponential time quantum algorithms were known for solving GapSVP or
SIVP for all lattices within any polynomial approximation factors.

To develop a quantum algorithm for solving LWE, we mainly introduce two new techniques. First,
we introduce Gaussian functions with compler variances in the design of quantum algorithms. In
particular, we exploit the feature of the Karst wave in the discrete Fourier transform of complex
Gaussian functions. Second, we use windowed quantum Fourier transform with complex Gaussian
windows, which allows us to combine the information from both time and frequency domains. Using
those techniques, we first convert the LWE instance into quantum states with purely imaginary
Gaussian amplitudes, then convert purely imaginary Gaussian states into classical linear equations
over the LWE secret and error terms, and finally solve the linear system of equations using Gaussian
elimination. This gives a polynomial time quantum algorithm for solving LWE.
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Motivation of This Line of Work
® Silent generation/PCG of Beaver triples over 5

B Application 1: Silent GMW Preprocessing
B Application 2: GC-PCG
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Backgrounds on MPC/2PC ac!l!

B Oblivious Transfer from Correlated OT Q
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B Receiver sends diff. to get OT Craf+a) “
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Backgrounds on MPC/2PC ac!l!

B Oblivious Transfer from Correlated OT @ -
B Correlation Resistant hash to get random OT | 4/<COT-PCG>\‘ A @
B Receiver sends diff. to get OT Ezlzliili 1 N

my < H(A +vq)

[mgl = H(ClA + V]_) m% < H(Vl)
1
d=xPpc

Choseninput: x € {0,1}

_—
CO = Enc(mé,yo)

—E -
Get yx = Dec(m¢, Cx) wyl)
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Backgrounds on MPC/2PC

® Oblivious Transfer from Correlated OT @
B Correlation Resistant hash to get random OT
B Receiver sends diff. to get OT

ac'l"
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. —COTPCG . » &
(118 v1) 1
(cn.cnA + vn) P BT-PCG Vn

B Beaver Triple (P A A (B, b5, B)
st.(a® +aP) - (b* +bB) = (A + B)
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Backgrounds on MPC/2PC ac!l!

B Oblivious Transfer from Correlated OT Q -
m Correlation Resistant hash to get random OT A/CCOT-PCG>\s @
. . A+v
B Receiver sends diff. to get OT Ecl CIM 1;
Ch,C Vv, %
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B Beaver Triple X/d)\ (P A A (B, b5, B)
Y st. (@ +aB) - (b +bB) = (A + B)

o Alice hasx € {0, 1} and samples xA,xB s.t. X [ xB = X, sends xB to Bob x-y=(x@®ada)-(y®bdb) =ef @eb@® af & ab
B Bob has y € {0,1} and samples yA, yB s.t. yA (an yB =y, sends yB to Alice \g—/ T \c/
. Partiesopene = x @ a,f =y P b
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m Correlation Resistant hash to get random OT A/CCOT-PCG>\s @
. . A+v
B Receiver sends diff. to get OT Ecl CIM 1;
Ch,C Vv, %
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B Beaver Triple X/d)\ (P A A (B, b5, B)
Y st. (@ +aB) - (b +bB) = (A + B)

o Alice hasx € {0, 1} and samples xA,xB s.t. X [ xB = X, sends xB to Bob x-y=(x@®ada)-(y®bdb) =ef @eb@® af & ab
B Bob has y € {0,1} and samples yA, yB s.t. yA (an yB =y, sends yB to Alice \g—/ T \c/
. Partiesopene = x @ a,f =y P b

[z] = ef © e[b] @ fla] @ [c]
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Backgrounds on MPC/2PC ac!l!

B Oblivious Transfer from Correlated OT Q -
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. . A +v
B Receiver sends diff. to get OT Ecl CIM 1;
Cn, C V Vv
, : " . —(BT-PCG ’
B Beaver Triple /d)\ (P A A (B, b5, B)
X Y st. (@ +aB) - (b +bB) = (A + B)
o Alice hasx € {0, 1} and samples xA,xB s.t. X @ xB = X, sends xB to Bob x-y=(x@®ada)-(y®bdb) =ef @eb@® af & ab
B Bob has y € {0,1} and samples yA, yB s.t. yA (an yB =y, sends yB to Alice 7 T \c/
. artiesopene = x P a,f =
rarties o Gal=yob 2] = ef ® e[b] @ f[a] & [c]
B Active security with SPDZ-style authentication A/CABT-PCGD\
Cal’al) (aB, bB, cB)
(A%, M[a*], M[pA], M[A]) (A8, M[aB], M[bB], M[cB])

st.(a® +aP) - (b® +bB) = (A + B)
(uA + uB) . (AA -+ AB) = M[uA] + M[uB] overIB‘2>\
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Backgrounds on MPC/2PC ac!l!

B Oblivious Transfer from Correlated OT Q -
m Correlation Resistant hash to get random OT 4/<COT-PCG>\> @
. . A+v
B Receiver sends diff. to get OT Ecl CIM 1;
Cn, C V| \"%
, : " . —(BT-PCG ’
B Beaver Triple /d)\ (P A A (B, b5, B)
X Y st. (@ +aB) - (b +bB) = (A + B)
o Alice hasx € {0,1} and samplesxA,xB s.t. X @ xB = X, sends xB to Bob x-y=(x@®ada)-(y®bdb) =ef @eb@® af & ab
™ Bob hasy € {0, 1} and samples yA, yB s.t. yA (an yB =y, sends yB to Alice 7 T \c/
. artiesopene = x P a,f =
rartiesopene =x@af =y &b 2] = ef @ e[b] & fla] ® L]
B Active security with SPDZ-style authentication A/CABT-PCGD\
Cal’al) (aB, bB, cB)
it i (A%, M[a*], M[bA], M[A]) (a8, M[aP], MbB], M[P))
® IT-MAC has additive-homomorphism Mia], MIE], Mla”], M[b7],
st.(a® +aP) - (b® +bB) = (A + B)
B open = reveal + check R X .
A B (V' +u”)- (A +A):M[u]—|—M[u]overIE‘2>\
B reveal(x) = send x*, x
B check(x) = check M[x*] + M[x?] = (x* + xB)(A* + AP)
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Paradigm for PCG ac!l

Paradigm for COT/sVOLE PCG e — . " ~
B Generate sparse correlations _ ; 1 Alice: 2%y
B Compress with linear map (LPN) = Bob:Z°, A

FSS for DPF/RDPF 9 Correlation: 2 +28 =y - A
® Input: [a], [B] . A y

® Output: (k#, k®)
b x=«

B Correlation: Eval(k*, x) 4+ Eval(k®, x) = {
0 o.w.

SPFESS: Sum of single Point FSS (also called Multi-Point FSS)
B For a t-sparse noise, generate t-pairs of DPF FSS keys
B Full domain evaluation givesuseore - A
®m FullEval(k?) + FullEval(kB) = e - A — Left multiply by H gives us the desired correlation.
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More Details on DPF FSS, o = 010, 6 = A ac!l!

e _ B _
A= s’é @ sg, assume wlog. LSB(A) =1
—
@ ° Goal: O = share of $$9, O = share of O>‘

A

B
B B B B
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More Details on DPF FSS, o = 010, 6 = A ac!l!

e t2 = LSB(s2)
A= s’é b sg, assume wlog. LSB(A) = 1
A — Go(2) 5 = Gy(s2)
0 0L 1 1 —>
@ ° Goal: O = share of $$9, O = share of 0™

A
e LSB

8 = Go(sB) 5

B
B B B B
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More Details on DPF FSS, o = 010, 6 = A ac!l!

e ~ LSB(SQ)
_ B _
A= s’é @ sg, assume wlog. LSB(A) =1

A — 6o (D) 5 = Gy (s2)
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More Details on DPF FSS, o = 010, 6 = A ac!l!
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More Details on DPF FSS, o = 010, 6 = A ac!l!

e _ B _
A= s’é @ sg, assume wlog. LSB(A) =1
—
@ 9 Goal: O = share of $$9, O = share of O>‘
- foeee W2 = g - (5 ® S0 @ 31 @ 51p)
: da; - (35, B35 B3y O35))

s00 = %00 @t + CW2, 551 = 551 D tg - W2

A i - -
(3) () (@) (@) (@) (@) (4) |b-detond-tieda

B _ & B B _ B B
s00 = S00 D tg - W2,5091 =501 Dt - W2

| B B B _:B B
e — S10 = 510 Oty - W2, 571 = 513 Dty - CWR
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More Details on DPF FSS, o = 010, 6 = A

A
5000

B
5000

ac'l"

_ B _
A= s’é @ sg, assume wlog. LSB(A) =1

—
Goal: O = share of $$9, O = share of O>‘

CW1, CWo, CW3

%k %k %k

@ > CWout = ZSA ) ZSE** DA

Z'iqu - S'iAdx D t;%lx - CWout for idx € {0,133
B _ B B oridx & ,
Zigx = Sidx D tigx ~ Wout
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Half-Tree, o = 010, 5 = A,LSB(A) =1 acll
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Half-Tree, o = 010, 5 = A,LSB(A) =1 acll

e t2 = LSB(s2)
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Half-Tree, o = 010, 5 = A,LSB(A) =1

ac'l"
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= LSB(s

_ B _
A= s’é @ sg, assume wlog. LSB(A) =1

O O
Goal: = share of A, = share of O>‘
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Half-Tree, o = 010, 5 = A,LSB(A) =1 ac!l
t2 = LSB(s2)
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Half-Tree, o = 010, 5 = A,LSB(A) =1 acll
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Half-Tree, o = 010, 5 = A,LSB(A) =1
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A= s’é @ sg, assume wlog. LSB(A) =1

T oa (O O
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CW1, CWo, CW3
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Z'iqu - S'iAdx 3
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Motivations

Key problem with “Quadratic” correlation

® Quadratic computation blow-up

® Consider 10° — 102

Alice: 24, yA, xA
. B B B
Bob: z°, y°, x

Consider x*[i] - y2[j] = (H[i],e*) - (H[j], €®)

Let H € TN, |e| = t.

HIi] X[ | %]

cN length

For regular LPN over Iﬁ‘p, H « IE‘p

NXcN

, expected O(c2 N2 ) work

HI

ac'l"
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Previous Solutions ac!l!
BCGIKS20

B Ring-LPN: Replace (H, e) with (a(X), e(X)) for a(X), e(X) € (F,[X]/(f(X)))*
® Now evaluating cross-term requires O(c?N log N) = O(N) work (with FFT)
B The resulting polynomial (a ® a,e* ® €®) is isomorphic to F}
B CRTrequiresg > N

BCGIKS20 (FOCS’20)

B VD-LPN
BCGIKRS22

B EA-LPN Replace (H, e) with (E - A, e) for c-sparse E, upper-triangular A
® Now evaluating cross-term requires O(c*t>N) work
B Requires further cryptanalysis

BCCD23

B QA-SD Replace univariate polynomial in Ring-LPN with multivariate polynomial
B Generate Beaver triples over ', forg > 3

BBCCDS24

B QA-SD over F,4 implies Beaver triples over [F>.
B FFT optimizations and implementation

Brilliant Cryptographers - Actively Secure DPF KeyGen for QA-SD
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Distributed Setup of PCG ac'l!

Ds17
B Distributed setup of DPF keys with black-box 2PC

ZGYZYW24
B Half-tree DPF KeyGen from BDOZ-authenticated inputs and SPDZ-authenticated-payload

Ultimate Goal
B End-to-end 2PC with malicious security
® 1. Correct LPN variant
B 2. Matching lNFss keyGen With malicious security
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Problem with BCGIKS20 (Ring-LPN) ac!ln

BCGIKS20
B Ring-LPN: Replace (H, e) with (a(X), e(X)) for a(X), e(X) € (F,[X]/(f(X)))*
® Now evaluating cross-term requires O(c?N log N) = O(N) work (with FFT)
B The resulting polynomial (a ® a,e* ® €®) is isomorphic to F}
B CRTrequiresg > N

Our Goal: Beaver Triple over [F5
B Ring-LPN solution requires setting g = 2°, incurring a p-time blow-up

B Beaver triple in GMW: Suppose we have [x], [y] and we want to compute [x - y]
® Beaver triple: ([a], [b], [a - b])
B x-y]=[(x®ada)-(yebeb)|=[x®a)(y®b)]| ®[(x®a)b] @ [aly ®b)] & [ab]

12 Brilliant Cryptographers - Actively Secure DPF KeyGen for QA-SD



Quasi-Abelian Syndrome Decoding ac!l!

def
FqlG] = {dec; dgg8 | ag € FCI}

mG={l}:F,[G] =T,
B G=7/nZ:F,[G] = F[X]/(X" — 1)

13.1: Finite Abelian Groups

In our investigation of cyclic groups we found that every group of prime order was isomorphic to Z,, where p was a prime number.

We also determined that Z,,, = Z, X Z, when gcd(m,n)=1. In fact, much more is true. Every finite abelian group is

isomorphic to a direct product of cyclic groups of prime power order; that is, every finite abelian group is isomorphic to a group of

the type
Zp;?q Koees XZpgn,

where each py, is prime (not necessarily distinct).

Multiplication by convolution
def
(dec agg) (dec bgg) — ZgGG (ZheG ahbh‘lg) 3

(Search) QA-SD problem. Given H = (1 | a) a parity check matrix of a random systematic quasi-
abelian code, a target weight t € N and a syndrome s € F,[G], the goal is to recover an error

e = (e1 | &) with e « D; (IF4[G]) such that He' =s,i.e.e; +a-e, =s.

Brilliant Cryptographers - Actively Secure DPF KeyGen for QA-SD
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Quasi-Abelian Syndrome Decoding in PCG ac!l!

Recall our goal: 2* + 28 = (x* + xB) - (y* + y®)

B Letx* = (a,ep), y® = (a, e;) c-length vector inner product over IF,[G]
B Lletx'y’ = (a®a,eg Q@ ey)
® FullEval(x*y®)[i] = x*[i] - y®[i] over IF,

Multiplication by convolution

(Zicig 9581) (Ziet buhi) = Sijerq 9sbn(gi o h)
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Quasi-Abelian Syndrome Decoding in PCG ac!l!

Recall our goal: 2* + 28 = (x* + xB) - (y* + y®)

B Letx* = (a,ep), y® = (a, e;) c-length vector inner product over IF,[G]
B Lletx'y’ = (a®a,eg Q@ ey)
® FullEval(x*y®)[i] = x*[i] - y®[i] over IF,

Multiplication by convolution
(Zicig 9581) (Ziet buhi) = Sijerq 9sbn(gi o h)

B Use c’t’* DPFFSSto share ey ® 1
B Locally evaluate the additive share of ey ® e; and convert them into shares over [F,|[G]
B Perform [F,[G] inner product

B Perform FullEval to get final output

14 Brilliant Cryptographers - Actively Secure DPF KeyGen for QA-SD
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Choice of G aclll'

B The most interesting case is I, = [

B However,whenqg =2,G ={15} ® ... ® {15} has order 1
®m FOLEAGE setsq = 4,G = (Z/3Z)"

B Fy[G] 2 Fo[Xe, .., Xal /G — 1,.., X3 — 1) X F¥

Why F4Z

Let ([a]*, [b]*, [ab]*) be a Beaver triple over F4. Writing x = x(0) + 6 - x(1) for any x € Fy,
with 8 a root of the polynomial X> + X + 1 (hence 6 = 6 + 1), we have

a-b = a(0)b(0) +a(1)b(1) + 8 - (a(0)b(1) + a(1)b(0) + a(1)b(1))
s (ab)(0) = a(0)b(0) + a(1)b(1)

2-Party Case: Let (a, b, [ab]*) be an OLE triple

(a - b)(0) = [ab]A(0) + [ab]5(0) = a(0)b(0) + a(1)b(1),

a(0)a(1) + [ab]4(0) + b(0)b(1) + [ab]#(0) = (a(0) + b(1)) - (a(1) + b(0)).

known by A known by B shared by A,B shared by A,B

Brilliant Cryptographers - Actively Secure DPF KeyGen for QA-SD
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Optimized Distributed KeyGen

Protocol II,ppr-cw

PARAMETERS:
— Party o € {0,1} has input [a:], € Fa,77 € {0, 1}, (s7; 17 ;) je0,1,2y € {0, 1}°P*H).

— An instantiation of chosen (;)—OT.

ProTOCOL:
For each party o € {0, 1}:
1: Sample 2% +r {0,1}2A+D),

2: Define
Co = (17 @ sioll(tio®0), sialltin, sialltie) ®2° > [CW;], when o; =0
CT := (siolltio, i ®siill(ti1 ® o), sizlltiz) ®2° > [CW;], when o =1
C3 = (siolltio, sialltis, ™ ®sia||(tiea® o)) ®2° © [CW;], when o = 2
Mg = (Cga Tacg)a ]-\/-['Z:lr = (CT, ga Cg)a Mg = (Cga gac?lr)

3: Invoke (;)—OT with party & as follows:

- Party & plays the role of the sender with inputs M, ;.

- Party o plays the role of the receiver and inputs [ai]s € F3.

- Party o gets M, ;_[[a:].] € {0, 1}3+1D while party & gets nothing.
4: Define [CW;], := MY, ;_[[c:],] ® 27 and broadcast [CW;],.
. Construct CW; := [CW;], & [CW;]s € {0,1}3*+D),
. Output (CW, o, CW,; 1, CW,; 2).

o

(@)

ac'l"

-ryptographers - Actively Secure DPF KeyGen for QA-SD
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Other Optimizations of FOLEAGE

Using a single multi-evaluation step

® Alice | Bob evaluates fA = (a ® a, (eg ® e1)*?), x[g] - y[g] = fA(8) + fB(g) forg € G

B Instead of FFT — IFFT — FFT, we can keep FFT(a ® a) as pp and perform only one FFT
FFT Optimization

B Recall that order |G| = 3"

B Full-evaluation is traversing on a tenary tree

B Use classic divide-and-conquer algorithm to achieve O(n3") complexity

P(X1,..., Xn) = Po (X1, e s Xne1) + XaP1 (X1, oo s Xn—1) + X2P2 (X1, v, Xn_1)

ac'l"

® work(n) =3 -work(n —1) +2-3"
® work(n) =2-n-3"

Additional FFT Optimization
B Recall that there are ¢? polynomials in ey ® e
B We can pack 32 monomial evaluation in a 64-bit machine word
B Polynomial evaluation is XOR of monomial evaluations — 32-times optimization

Brilliant Cryptographers - Actively Secure DPF KeyGen for QA-SD



19

Optimization with Early Termination ac!l

General Idea

B For FSS with small output domain, we can pack the truth table of a sub-tree in an internal
node.

Real tree generated

Virtual trees hard- \:‘
O %
Problem

coded in the leaves
B Since the index is tenary, we can only pack 3/'°83(64)1 |eaves

Brilliant Cryptographers - Actively Secure DPF KeyGen for QA-SD
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Protocol Ioutput-cw

PARAMETERS:

— There are two parties o,4 € {0,1} with input ([a:]o)icpy € (F3), [B]o € Fa,s7 € {0, 1}

— An instantiation of chosen (3)—0T.

— Pseudorandom function G: {0,1}* — (F4)3".

ProTocoL:
For each party o € {0, 1}, for i € [¢]:

1: Sample 27 «r (F4)*
2: Define

CEU = (I[fﬁ]]d'aoso) @z € (F‘i)ai:

Cfl = (01 H}B]]ﬂ'so) P Z.? € (F‘i)Si:

fa= 0.0, [Bl) @ € (Fa)™,

MG —_— (Ct 0, 1 ;L 3,2)1 f = ( El: EQ:CS): Mg = (

3: Invoke (;)-OT with party & as follows:
- Party & plays the role of the sender with inputs M?ﬁa]]a‘

- Party o plays the role of the receiver and inputs [a;], € Fs.

- Party o gets M?“i]]ﬁ‘ [[eii]s] € (IFL;)TE while party & gets nothing.

4: Define [8], := M?[[os],] @ 27 € (F1)3'.
Output [CW]: := [B]le & G(57).

[
1,2

o
1,09

o
i1

)

ac'l"
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Converting Half-Tree Techniques to Tenary Trees ac!l

B Currently the 1-out-of-3 OT seems hard to instantiate using the half-tree technique
B The main difficulty, in my opinion, is how to express CW,; as a linear function on index ¢;
and its authentication

B In Half-tree, CW; = H(s? ) ® H(si ;) ® (1 ® o) - A

" MFOLEAGE,  c; = (Go(s?.,) ® Go(s) 1) & (et = 0}
Gi(si-1) @ Gi(siz1) ® L = 1)1
Ga(si-1) ® Ga(si—1) @ I(c; = 2)-r)

Minor Details

B Index authentication over [5
B Tenary Half Tree
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Distributed KeyGen for Half-Tree

Protocol HDPF

This protocol invokes Ilg,tchcheck (Figure 2) as a sub-protocol.
Initialize: For each b € [y, P, samples Ay < Fqx such that Isb(A;) = b, and sends (init, b, Ap) to Fagit.

Protocol inputs: Two parties P, and P; hold n BDOZ-style authenticated sharings (V) = ((a®)),, («®}),)
for all ¢ € [0,n) as well as a SPDZ-style authenticated sharing [8] = ([B]o, [B]1)- Let N = 2" for some
n € N. Let Ho : {0,1}* — {0,1}* be a CCR hash function and H; : {0,1}* — {0,1}?* such that H;(z) :=
Ho(z) || Ho(z @ 1).

Generate SPDZ-style authenticated sharings of DPF outputs: Let (o)), = (o:z(f), Ks [agilb], Mb[o:z(f)]) and
[8]s = (B, Mp[3]) for each b € {0,1}. The parties Py and P; do the following.

1. Both parties call F;, to sample a public randomness W € Fyx. Each party P, sets (SEED’O) | tgo,o)) =
Ay, W € {0, 1}’\.

2. Foreach b € {0,1}, for each i € [0,n), P, computes the following:
W, i= (@02 Holsy ) 167)) @ B0 @ (af - A @ Kofaf?,] @ M[af”]) € {0,1}

and sends CWS) to P, _. For each ¢ € [0,n), both parties compute cw(® .= CW[(f) O CW?), and each party
P, computes:

(56129 4129 s= g (50 1469) @169 - WO for each j € [0, 21,

(5120 | £12540) g (59 469) @ (69 659 @ 65 - CWO for each j € [0, 21).

ac'l"
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Distributed KeyGen for Half-Tree (Continued) aclln

3. Foreach b € {0,1}, P, computes
WS = (e p0,m H(s™ 1477)) @ (8 M [B]) € {0,112,

and sends CW£") to P;_,. Then, both parties compute CW™) := CW[g") fas CW&”). For each b € {0,1}, P,
computes

w7, = (ugﬁ — ) My = (s | t§“=3‘))) for each j € [0, N),

[vP], = (fuéj) [ Mb[v(j)]) = H, (Sgn’j) | tgn’j)) D tgn’j) . CW™ for each j € [0, N).

4. As in the Rand process of protocol IIopc (Figure 4), both parties call functionality JF,g;: to generate [r] with
a random r € [F,.. Then, both parties call functionality ., to sample a random challenge x € F,x, and
locally compute

la] := Zje[D,N) Xj . [[“(j)]] + Zje[U,N) XN+j ' [[’U(j)]] + [r].

5. As in the Open process of protocol Il>pc, both parties open [a] to obtain @ = ag + a; € Fax by letting Py
send ag to P, and P; send a, to F, in parallel. Then, both parties run sub-protocol IIgatchcheck (Figure 2) on
input ([a], a) to check a = a.

6. For each j € [0, N), both parties obtain [u(?] = ([u9]o, [«]1) and [v] = ([v(D]e, [vD]4).
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Some Confusing Points ac!l

What's the cost of broadcast
m P, ..., P, sends shares to P;, who sends back reconstructed value
B Total comm. is 2(n — 1) bits, amortized comm.~ 2 bits

Protocol IIgt(Fs — F2)

ProTOCOL:

1: The parties invoke the functionality FeeT(Fs4) with init. Each party P; receives a triple
([al3, [0]3, [c]?) € Fi.

2: Each party P; broadcasts [b]:(1). All parties reconstruct b(1) = Zfil[[b]lf(l)

OuTtpuT: Each party P; outputs ([a];(0), []7(0), [¢]#(0) + b(1) - [a]i(1)).

Lemma 21. The protocol IIgt(Fs — Fy) of Fig. 16 securely realizes the Fgt(IF2) corruptible func-
tionality in the Fgt(F4)-hybrid model, using one bit of communication per party and a single call to

FeT(F4).

What's the cost of GMW online
B With star-sharing, 1 broadcast suffices
B With additive sharing, we need 2 broadcasts
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Garbling Pseudorandom Correlation Function ac!l

B Using FSS for decision tree, we can support degree-2, 3, ... polynomials
B Recall that with EA-LPN, we have y; = h/ -e,y; = h/ - e
m Therefore,y;-y; = (hy @ h;))" - (e ® e)
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Garbling Pseudorandom Correlation Function

ac'l"

B Using FSS for decision tree, we can support degree-2, 3, ... polynomials
B Recall that with EA-LPN, we have y; = h/ -e,y; = h/ - e
m Therefore,y;-y; = (hy @ h;))" - (e ® e)

c2 -sparse

t2 -sparse

c-sparse t-sparse

B With FSS for decision trees, we can support constant degree polynomial evaluation over
the y coordinates.

vi= il [l [1i3][lia]]|

vi = [la] [ li2] [ lis] | lial | «

|

@2

o3

oy

Vivp =i ] {ia] [ [is] | [ia] ]| «

LELSTST =T
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Garbling Pseudorandom Correlation Function ac!l

B Using FSS for decision tree, we can support degree-2, 3, ... polynomials
B Recall that with EA-LPN, we have y; = h/ -e,y; = h/ - e
m Therefore,y;-y; = (hy @ h;))" - (e ® e) csparse bsparse

c2 -sparse t2 -sparse

B With FSS for decision trees, we can support constant degree polynomial evaluation over
the y coordinates.

— o1 —
T - - ; oy T - - . i1
vi = [Tl 11ia]1Tia]] « ., Viovp =[] T2l T3] [ Tia]] « %
i |

- — 3 —

i ={lin] | 2] [ ] ] lia]] « i3
]i

G (R

1 i1 > j2 > 1 i1 > i
+ shy3 = ’1—"_‘1A’3—°‘3+sh14: 1 2o Ny < oy
’ 0 otherwise ’ 0 otherwise

+...
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Garbling Pseudorandom Correlation Function ac!l

B Using FSS for decision tree, we can support degree-2, 3, ... polynomials
B Recall that with EA-LPN, we have y; = h/ -e,y; = h/ - e
m Therefore,y;-y; = (hy @ h;))" - (e ® e) csparse bsparse

c2 -sparse t2 -sparse

B With FSS for decision trees, we can support constant degree polynomial evaluation over
the y coordinates.

] &1 ]
T - - ; oy T - - . i1
vi=[li [Tl [ [i3][lial] I Viovi =i [lio| [[i3] | [ial]| =
o]
o — 3 —
vi=Uil[li2] [ lis] [lia] ] « i3
Ji

N

Vi vj = _ 1 i 2 a1 Nj1 2 ay _ 1 i 2 a1 Njo < ap

Shl’l {O otherwise + Sh1’2 0 otherwise

1 iq > j2 > 1 iq > i
+ shy3 = '1_°_t1/\13_a3+sh14: 1 =] Alg < e
’ 0 otherwise ’ 0 otherwise

oo
\

FSS for (2,3,...)-dim rectangles
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Half-Tree, o = 010, 5 = 110,LSB(A) =1 acll

vo = A > fZ’Z(x - 1l x>aNny>B
s A B T V0 ow
vi =0 A= s’é &) sg, assume wlog. LSB(A) = 1

o~ —> O
Y A a Note: O = share of A, = share of 0™

S

vo = A

/\ —>)
A A A
@ So1 S10 S11
A A A A A A A
5000 @ 5010 @ 5100 @ @ S111

B If starting node s* = s® then output share is always 0
B Nodes on the same level can re-use the same pp.
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