Authenticated Garbling From Simple Correlations Eurocrypt 2022 Submission

Anonymous Submission January 30, 2022. Presented by Hongrui Cui

Introduction

- Authenticated Garbling with simple correlations: (s)VOLE, OLE, MT
- Goal: Malicious 2PC for Boolean circuits
- Techniques: PCG, LPZK, Compression, CDS
- Improvements (semi-honest as a baseline)

Protocol	Correlated randomness	Cost in garble	d circuits		
		Dep. + online	Total		
WRK [20]	OT	2.5	11.0		
KRRW [14] v1	OT	1.5	7.75		
KRRW [14] v2	OT	1	9.7		
KRRW [14] with VOLE	\mathcal{F}_{VOLE}	1	2.5		
KRRW [14] with SPDZ	MT	1	7		
KRRW [14] with SPDZ and certified VOLE	MT - \mathcal{F}_{VOLE} – $\mathcal{F}_{subVOLE}$	1	2.9		
Ours, v1 (KRRW with \mathcal{F}_{DAMT} compiler to $\mathcal{F}_{pre(\kappa)}$)	$\mathcal{F}_{DAMT} - \mathcal{F}_{subvole} - \mathcal{F}_{vole}$	1	1.31		
Ours, v2	$ \mathcal{F}_{bVOLE} - \mathcal{F}_{subVOLE} - \mathcal{F}_{VOLE} $	1.47	2.25		
NISC in the single-execution setting					
Ours, v3	\mathcal{F}_{OLE}	7.47	7.47		
AMPR14 [1]	CRS	40	40		

ac	
----	--

$\mathcal F$ -models	Online / Dep.	Total	Comp.
RO, DAMT ,	$O(\kappa(\mathcal{I} + \mathcal{O}))$	$(2\kappa + 4\rho + 2)n$	$O(\kappa n)$
VOLE, sVOLE	$/ (2\kappa + 2)n$		
RO, VOLE, sV-	$O(\kappa(\mathcal{I} + \mathcal{O}))$	$(5\rho + 1)n + (2\kappa +$	$O(\kappa n)$
OLE, bVOLE	$/ (2\kappa + 3\rho)n$	3 ho)n	
RO, OLE	$O(\kappa(\mathcal{I} + \mathcal{O}))$	$(16\kappa + 3\rho)n +$	$O(\kappa n)$
	$ / (2\kappa + 3\rho)n$	o(1)	

Preliminaries

Hongrui Cui · Auth-GC-with-VOLE

╸║║╹╹

Preliminaries (Continued)

Oblivious Linear Evaluations

Constraint: $c_A + c_B = \alpha \cdot b$

Double Authenticated Multiplication Triples

Preliminaries (Continued)

acılı

■ P_B prove deg-d poly on \vec{r} using $O((\underbrace{n}_{input} + \underbrace{\rho d}_{proof}) \log p)$ bits

State of the art for OLE: BCG+20 (Ring-LPN)
 Can realize DAMT over F₂, not over F₂

Starting Point: KRRW18 (Previous state of the art)

Boolean circuit C: input $\mathcal{I}_A \cup \mathcal{I}_B$, intermediate gates \mathcal{G} , output \mathcal{O}

$$\blacksquare \ m = \# \mathsf{Mult}, \ n = |\mathcal{I}| + m$$

Preprocessing + Online

Wire mask
$$\lambda_i = (s_i + r_i)$$
Constraint1: $\forall \quad \frac{i}{j} \land \quad k \quad (\hat{s}_k + \hat{r}_k) = (s_i + r_i) \cdot (s_j + r_j)$

Constraint2: $M[\vec{s}] = K[\vec{s}] + \beta \cdot \vec{s}, M[\vec{s}] = K[\vec{c}] + \beta \cdot \vec{s}$ (over $\mathbb{F}_{2^{\rho}}$) Constraint3: $M[\vec{r}] = K[\vec{r}] + \Delta_A \cdot \vec{r}, M[\vec{r}] = K[\vec{r}] + \Delta_A \cdot \vec{r}$ (over $\mathbb{F}_{2^{\kappa}}$) ╸║║╹

Starting Point: KRRW18 (Online) $\Delta_A \in \mathbb{F}_{2^{\kappa}}$ $\beta \in \mathbb{F}_{2\rho}$ $r_i, \mathsf{M}[r_i], \mathsf{K}[s_i]$ for $i \in [n]$ $s_i, \mathsf{M}[s_i], \mathsf{K}[r_i]$ for $i \in [n]$ $\hat{s}_k, \mathsf{M}[\hat{s}_k], \mathsf{K}[\hat{r}_k]$ for $k \in [m]$ $\hat{r}_k, \mathsf{M}[\hat{r}_k], \mathsf{K}[\hat{s}_k]$ for $k \in [m]$ P_A samples $L_{i,0} \leftarrow \mathbb{F}_{2^{\kappa}}$ for $i \in [n]$ and sets $L_{i,1} = L_{i,0} + \Delta_A$ $G_0 = H(L_{i,0}) + H(L_{i,1}) + \underbrace{s_j \cdot \Delta_A + \mathsf{K}[r_j]}_{\lambda_j \cdot \Delta_A - \mathsf{M}[r_j]}$ \wedge $G_1 = H(L_{j,0}) + H(L_{j,1}) + s_i \cdot \Delta_A + \mathsf{K}[r_i] + L_{i,0}$ $\lambda_i \cdot \Delta_A + L_{i,0} - \mathsf{M}[r_i]$ $L_{k,0} = H(L_{i,0}) + H(L_{j,0}) + (s_k + \hat{s}_k) \cdot \Delta_A + \mathsf{K}[r_k] + \mathsf{K}[\hat{r}_k]$ $(\lambda_i \cdot \lambda_i + \lambda_k) \cdot \Delta_A - \mathsf{M}[r_k] - \mathsf{M}[\hat{r}_k]$

 $\mathsf{lsb}(L_{k,0})$ (Constraint: $\mathsf{lsb}(\Delta) = 1$)

Starting Point: KRRW18 (Online) Evaluate (GC):

$$\begin{split} L_{k,z_{k}} = &H(L_{i,z_{i}}) + H(L_{j,z_{j}}) + z_{i} \cdot (G_{0} + \mathsf{M}[r_{j}]) \\ &+ z_{j} \cdot (G_{1} + \mathsf{M}[r_{i}] + L_{i,z_{i}}) + \mathsf{M}[r_{k}] + \mathsf{M}[\hat{r}_{k}] \\ = &H(L_{i,0}) + H(L_{j,0}) + (z_{i}\lambda_{j} + z_{j}\lambda_{i} + z_{j}z_{i}) \cdot \Delta_{A} + \mathsf{M}[r_{k}] + \mathsf{M}[\hat{r}_{k}] \\ = &L_{k,0} + ((z_{i} + \lambda_{i}) \cdot (z_{j} + \lambda_{j}) + \lambda_{k})\Delta_{A} = L_{k,z_{k}} \end{split}$$

 $z_k = \mathsf{lsb}(L_{k,z_k}) + \mathsf{lsb}(L_{k,0})$

acili

Starting Point: KRRW18 (Online)

Evaluate (AuthGC)

For each
$$\frac{i}{j} [\land]_{k}$$
, checks $(z_i + \lambda_i) \cdot (z_j + \lambda_j) = (z_k + \lambda_k)$
 P_B sends all z_w to P_A

$$z_{i}z_{j} + z_{i}(s_{j} + r_{j}) + z_{j}(s_{i} + r_{i}) + (\hat{s}_{k} + \hat{r}_{k}) - z_{k} - (s_{k} + r_{k}) = 0$$

$$\underbrace{z_{i}z_{j} + z_{i}r_{j} + z_{j}r_{i} + \hat{r}_{k} + z_{k} + r_{k}}_{c_{B}} = \underbrace{z_{i}s_{j} + z_{j}s_{i} + \hat{s}_{k} + s_{k}}_{c_{A}}$$

acili

Starting Point: KRRW18 (Online)

Evaluate (AuthGC)

For each
$$\frac{i}{j}$$
 \land k , checks $(z_i + \lambda_i) \cdot (z_j + \lambda_j) = (z_k + \lambda_k)$
 P_B sends all z_w to P_A

$$z_{i}z_{j} + z_{i}(s_{j} + r_{j}) + z_{j}(s_{i} + r_{i}) + (\hat{s}_{k} + \hat{r}_{k}) - z_{k} - (s_{k} + r_{k}) = 0$$

$$\underbrace{z_{i}z_{j} + z_{i}r_{j} + z_{j}r_{i} + \hat{r}_{k} + z_{k} + r_{k}}_{c_{B}} = \underbrace{z_{i}s_{j} + z_{j}s_{i} + \hat{s}_{k} + s_{k}}_{c_{A}}$$

■ P_A sends $h = H(..., z_i M[s_j] + z_j M[s_i] + M[\hat{s}_k] + M[s_k], ...)$ ■ P_B checks $h = H(..., z_i K[s_j] + z_j K[s_i] + K[\hat{s}_k] + K[s_k] - c_A \cdot \beta, ...)$

Starting Point: KRRW18 (Online)

Evaluate (AuthGC)

For each
$$\frac{i}{j}$$
 \land k , checks $(z_i + \lambda_i) \cdot (z_j + \lambda_j) = (z_k + \lambda_k)$
 P_B sends all z_w to P_A

$$z_{i}z_{j} + z_{i}(s_{j} + r_{j}) + z_{j}(s_{i} + r_{i}) + (\hat{s}_{k} + \hat{r}_{k}) - z_{k} - (s_{k} + r_{k}) = 0$$

$$\underbrace{z_{i}z_{j} + z_{i}r_{j} + z_{j}r_{i} + \hat{r}_{k} + z_{k} + r_{k}}_{c_{B}} = \underbrace{z_{i}s_{j} + z_{j}s_{i} + \hat{s}_{k} + s_{k}}_{c_{A}}$$

- P_A sends $h = H(..., z_i M[s_j] + z_j M[s_i] + M[\hat{s}_k] + M[s_k], ...)$ P_B checks $h = H(..., z_i K[s_j] + z_j K[s_i] + K[\hat{s}_k] + K[s_k] c_A \cdot \beta, ...)$
- Theorem 4 [KRRW]: Any boolean circuit C can be evaluated in the $\mathcal{F}_{\text{pre}}^{C,\kappa,\rho}$ -hybrid model using $O((2\kappa+2)n)$ bits and 4 passes

acılı

acılı

асііі

acılı

Hongrui Cui · Auth-GC-with-VOLE

M[r̂_k], M[ŝ_k], K[r̂_k], K[ŝ_k] can also be linearly computed.
 Final step is to reduce â_k, b̂_k to F₂

$$\hat{s}_k + \hat{r}_k \in \{0, 1\}$$

$$\mathsf{lsb}(\hat{s}_k) + \hat{s}_k = \mathsf{lsb}(\hat{r}_k) + \hat{r}_k$$

M[r̂_k], M[ŝ_k], K[r̂_k], K[ŝ_k] can also be linearly computed.
 Final step is to reduce â_k, b̂_k to F₂

$$\hat{s}_k + \hat{r}_k \in \{0, 1\}$$
$$\mathsf{lsb}(\hat{s}_k) + \hat{s}_k = \mathsf{lsb}(\hat{r}_k) + \hat{r}_k$$

$$\begin{split} \mathsf{K}[\hat{s}_k] &= \mathsf{M}[\hat{s}_k] + \hat{s}_k \cdot \beta \\ \mathsf{K}[\hat{s}_k] + (\hat{s}_k + \mathsf{lsb}(\hat{s}_k)) \cdot \beta &= \mathsf{M}[\hat{s}_k] + (\hat{s}_k + \mathsf{lsb}(\hat{s}_k) + \mathsf{lsb}(\hat{s}_k)) \cdot \beta \\ &\quad \mathsf{K}[\hat{s}_k] + (\hat{r}_k + \mathsf{lsb}(\hat{r}_k)) \cdot \beta &= \mathsf{M}[\hat{s}_k] + \mathsf{lsb}(\hat{s}_k) \cdot \beta \end{split}$$

Lemma 2: $\mathcal{F}_{\text{pre}}^{\text{PAnd},\rho,\rho} \mapsto \mathcal{F}_{\text{pre}}^{\text{PAnd},\kappa,\rho}$ with 2 bits per AND gate. Mac Key $\alpha \qquad \Delta_A$ Wire Mask $M[r] = r \cdot \alpha + K[r] \quad M[r'] = r' \cdot \Delta_A + K[r']$ Deg-2 Mask $M[\hat{r}] = \hat{r} \cdot \alpha + K[\hat{r}] \quad M[\hat{r}'] = \hat{r}' \cdot \Delta_A + K[\hat{r}']$ Then use LPZK-like technique to check $b = b', \hat{b} = \hat{b}'$

Lemma 1:
$$\mathcal{F}_{\text{pre}}^{\text{PAnd},\kappa,\rho} \mapsto \mathcal{F}_{\text{pre}}^{C,\kappa,\rho}$$
 with 4 bits per gate.

Generate $M[\vec{r}] = \Delta_A \cdot \vec{r} + K[\vec{r}], M[\vec{s}] = \beta \cdot \vec{s} + K[\vec{s}]$ using sVOLE Open $(r_i - r'_i, r_j - r'_j, s_i - s'_i, s_j - s'_j)$

- acılı.
- High-level idea: generate triples by reusing input of VOLE and hiding z-values using non-interactive authentication/mac opening

High-level idea: generate triples by reusing input of VOLE and hiding z-values using non-interactive authentication/mac opening

Lemma 5: From bVOLE to $\mathcal{F}_{cp}^{C,\rho,\rho}$: $5\rho + 2 + o(1)$ bits per gate P_A

 $\begin{array}{c|c} \text{Mac Key: } \alpha \in \mathbb{F}_{2^{\rho}} \\ s_{i}, \mathsf{M}[s_{i}], \mathsf{K}[r_{i}] \text{ for } i \in \mathcal{I} \\ s_{i}, \mathsf{M}[s_{i}], \mathsf{K}[r_{i}'] \text{ for } i \in [m] \\ \hat{s}_{k}, \mathsf{M}[\hat{s}_{k}], \mathsf{K}[\hat{r}_{k}] \text{ for } k \in [m] \\ \hline b' = M_{H} \cdot \vec{\mathfrak{b}}, \vec{d'} = M_{H} \cdot \vec{\mathfrak{d}}, \vec{w'} = M_{H} \cdot \vec{\mathfrak{w}} \end{array} \right) \\ \begin{array}{c} \text{Mac Key: } \beta \in \mathbb{F}_{2^{\rho}} \\ r_{i}, \mathsf{M}[r_{i}], \mathsf{K}[s_{i}] \text{ for } i \in \mathcal{I} \\ r_{i}, \mathsf{M}[r_{i}], \mathsf{K}[s_{i}] \text{ for } i \in \mathcal{I} \\ r_{i}', \mathsf{M}[r_{i}'], \mathsf{K}[s_{i}] \text{ for } i \in [m] \\ \hat{r}_{k}, \mathsf{M}[\hat{r}_{k}], \mathsf{K}[\hat{s}_{k}] \text{ for } k \in [m] \end{array} \right) \\ \end{array}$

High-level idea: generate triples by reusing input of VOLE and hiding z-values using non-interactive authentication/mac opening

Lemma 5: From bVOLE to $\mathcal{F}_{cp}^{C,\rho,\rho}$: $5\rho + 2 + o(1)$ bits per gate P_A P_{B}

Mac Key: $\alpha \in \mathbb{F}_{2^{\rho}}$ \blacksquare Mac Key: $\beta \in \mathbb{F}_{2^{
ho}}$ $\mathcal{F}^{C,
ho,
ho}_{ extsf{cp}}$ $r_i, \mathsf{M}[r_i], \mathsf{K}[s_i] \text{ for } i \in \mathcal{I}$ $s_i, \mathsf{M}[s_i], \mathsf{K}[r_i] \text{ for } i \in \mathcal{I}$ $r'_i, \mathsf{M}[r'_i], \mathsf{K}[s_i] \text{ for } i \in [m]$ $s_i, \mathsf{M}[s_i], \mathsf{K}[r'_i]$ for $i \in [m]$ $\hat{s}_k, \mathsf{M}[\hat{s}_k], \mathsf{K}[\hat{r}_k] \text{ for } k \in [m]_{L = \rho \cdot \log(8n/\rho)}$ $\hat{r}_k, \mathsf{M}[\hat{r}_k], \mathsf{K}[\hat{s}_k]$ for $k \in [m]$ $\vec{b'} = M_H \cdot \vec{\mathfrak{b}}, \vec{d'} = M_H \cdot \vec{\mathfrak{d}}, \vec{w'} = M_H \cdot \vec{\mathfrak{w}}$ Non-Linear 1: $(\hat{s}_k + \hat{s}_k) = (s_i + r_i) \cdot (s_j + r_j)$ Non-Linear 2: $M[\hat{r}_k] = K[\hat{r}_k] + \alpha \cdot \hat{r}_k$, $M[\hat{s}_k] = K[\hat{s}_k] + \beta \cdot \hat{s}_k$ 14 - 3

2nd Construction: block VOLE and compressed randomness P_B P_A $\alpha, \mathsf{K}[r_i]$ $r_i, \mathsf{M}[r_i], i \in \mathcal{I}$ $\mathcal{F}_{\mathsf{sVOLE}}$ $\mathbf{r}, \mathsf{M}[\mathbf{r}]$ $\vec{r'} = M_H \cdot \mathbf{r}$ K[r]

Extend $(r_i r_j)$, $\beta \cdot \mathbf{r} + \gamma, \beta + \gamma, \gamma$)

 $\mathsf{M}[\vec{r'}] = M_H \cdot \mathsf{M}[\mathfrak{r}]$

- ||||

 $\mathsf{K}[\vec{r'}] = M_H \cdot \mathsf{K}[\mathfrak{r}]$

 $\begin{aligned} \mathsf{M}[\hat{s}_{k}] &= \hat{s}_{k}\beta + \mathsf{K}[\hat{s}_{k}] \quad \mathsf{M}[s_{k,2}] = \hat{s}_{k,2}\beta + \mathsf{K}[s_{k,2}] \quad \mathsf{M}[s_{k,3}] = \hat{s}_{k}\alpha\beta + \mathsf{K}[s_{k,3}] \\ \mathsf{M}[s_{k,4}] &= (s_{i}s_{j} + s_{i}r_{j} + r_{i}s_{j})\beta + \mathsf{K}[s_{k,4}] \quad \mathsf{M}[s_{k,5}] = (s_{i}s_{j} + s_{i}r_{j} + r_{i}s_{j})\alpha\beta + \mathsf{K}[s_{k,5}] \end{aligned}$

Hongrui Cui · Auth-GC-with-VOLE

2nd Construction: An Optimization

 $\hat{s}_k + \hat{r}_k = (s_i + r_i) \cdot (s_j + r_j) = \underbrace{s_i s_j + s_{i,j}^{\times} + s_{j,i}^{\times}}_{\hat{s}_k} + \underbrace{r_i r_j + r_{i,j}^{\times} + r_{j,i}^{\times}}_{\hat{r}_k}$

 $\mathcal{F}_{\mathsf{bVOLE}}$

 $\blacksquare \mathsf{M}[\hat{s}_k] + \mathsf{K}[\hat{s}_k] = \hat{s}_k \cdot \beta = s_i s_j \beta + s_i r_j \beta + s_j r_i \beta - r_{i,j}^{\times} \beta - r_{j,i}^{\times} \beta$

 $\mathsf{M}[\vec{r'}] = M_H \cdot \mathsf{M}[\mathfrak{r}]$

 $\mathsf{M}[\mathfrak{r}], \mathfrak{r} + \gamma, \beta \cdot \mathfrak{r} + \gamma,$

 $\beta + \gamma, \gamma$

 $\vec{s}, \{s_i s_j\}$

2nd Construction: block VOLE and compressed randomness **ac** Lemma 4: Auth-GC from $\mathcal{F}_{cp}^{C,\kappa,\rho}$ with $O((2\kappa + 3\rho)n)$ communication **2nd Construction: block VOLE and compressed randomness Lemma 4: Auth-GC from** $\mathcal{F}_{cp}^{C,\kappa,\rho}$ with $O((2\kappa + 3\rho)n)$ communication $\Delta_A \in \mathbb{F}_{2^{\kappa}}$ $s_i, \mathsf{M}[s_i], \mathsf{K}[r_i], i \in [n]$ $\hat{s}_k, \mathsf{M}[\hat{s}_k], \mathsf{K}[\hat{r}_k], k \in [m]$ P_A samples $L_{i,0} \leftarrow \mathbb{F}_{2^{\kappa}}$ for $i \in [n]$ and sets $L_{i,1} = L_{i,0} + \Delta_A$

2nd Construction	n: block VOLE an	d compressed randomness	acılı
Lemma 4: Aut	h-GC from $\mathcal{F}^{C,\kappa, ho}_{cp}$ wit	th $O((2\kappa+3 ho)n)$ communicatio	'n
$\Delta_A \in \mathbb{F}_{2^{\kappa}}$		$eta \in \mathbb{F}_{2^{ ho}}$	
$s_i, M[s_i], K[r_i]$,	$i \in [n]$	$r_i, M[r_i], K[s_i]$, $i \in$	[n]
$\hat{s}_k, M[\hat{s}_k], K[\hat{r}_k],$, $k \in [m]$	$\hat{r}_k, M[\hat{r}_k], K[\hat{s}_k]$, k ($\in [m]$
P_A samples $L_{i,0} \leftarrow$	$- \mathbb{F}_{2^{\kappa}}$ for $i \in [n]$ and	sets $L_{i,1} = L_{i,0} + \Delta_A$	
$\frac{i}{j}$ \land k	$G_{0} = H(L_{i,0}) + H(G_{1}) = H(L_{j,0}) + H(G_{1}) = H(L_{j,0}) + H(G_{k,0}) = H(L_{i,0}) + H(G_{k,0}) = H'(L_{i,0}) + H(G_{k,1}) = H'(L_{i,0}) + H(G_{k,1}) = H'(L_{i,0}) + H(G_{k,2}) = H'(L_{j,0}) = H(G_{k,2}) = H(G_{k,$	$\begin{split} & L_{i,1}) + s_j \cdot \Delta_A + K[r_j] \\ & L_{j,1}) + s_i \cdot \Delta_A + K[r_i] + L_{i,0} \\ & T(L_{j,0}) + (s_k + \hat{s}_k) \cdot \Delta_A + K[r_k] \\ & H'(L_{j,0}) + M[s_k] + M[\hat{s}_k] \\ & H'(L_{i,1}) + M[s_j] \\ & H'(L_{i,1}) + M[s_i] \\ & H'(L_{j,1}) + M[s_i] \end{split}$	$+ K[\hat{r}_k]$

2nd Construction: block VOLE and compressed randomness Lemma 4: Auth-GC from $\mathcal{F}^{C,\kappa,\rho}_{cp}$ with $O((2\kappa + 3\rho)n)$ communication $\beta \in \mathbb{F}_{2\rho}$ $\Delta_A \in \mathbb{F}_{2^{\kappa}}$ $r_i, \mathsf{M}[r_i], \mathsf{K}[s_i], i \in [n]$ $s_i, \mathsf{M}[s_i], \mathsf{K}[r_i], i \in [n]$ $\hat{r}_k, \mathsf{M}[\hat{r}_k], \mathsf{K}[\hat{s}_k], k \in [m]$ $\hat{s}_k, \mathsf{M}[\hat{s}_k], \mathsf{K}[\hat{r}_k], k \in [m]$ P_A samples $L_{i,0} \leftarrow \mathbb{F}_{2^{\kappa}}$ for $i \in [n]$ and sets $L_{i,1} = L_{i,0} + \Delta_A$ $G_0 = H(L_{i,0}) + H(L_{i,1}) + s_i \cdot \Delta_A + \mathsf{K}[r_i]$ $\wedge \quad | \stackrel{k}{-} \quad G_1 = H(L_{j,0}) + H(L_{j,1}) + s_i \cdot \Delta_A + \mathsf{K}[r_i] + L_{i,0}$ $L_{k,0} = H(L_{i,0}) + H(L_{i,0}) + (s_k + \hat{s}_k) \cdot \Delta_A + \mathsf{K}[r_k] + \mathsf{K}[\hat{r}_k]$ $G'_{k,0} = H'(L_{i,0}) + H'(L_{j,0}) + \mathsf{M}[s_k] + \mathsf{M}[\hat{s}_k]$ $G'_{k,1} = H'(L_{i,0}) + H'(L_{i,1}) + \mathsf{M}[s_j]$ $G'_{k,2} = H'(L_{j,0}) + H'(L_{j,1}) + M[s_i]$ $z_k = z_i z_j + z_i r_j + z_j r_i + (H'(L_{i,z_i}) + z_i G'_{k,1} + H'(L_{j,z_j}) + z_j G'_{k,2} +$ $G'_{k,0} + z_i M[r_j] + z_j M[r_i] + M[r_k] + M[\hat{r}_k]) \cdot \beta^{-1}$ $L_{k,z_k} = H(L_{i,z_i}) + z_i(G_0 + \mathsf{M}[r_j]) + H(L_{j,z_i}) + z_j(G_1 + \mathsf{M}[r_i] + L_{i,z_i})$

- \blacksquare Protocol is only one-pass, r_i is essentially hidden from P_A
- Only attack possibility: Selective-Failure Attack
- It is sufficient to use a $(\rho 1, L)$ -independent set as rows of M_H

acılı

acili

acılı

acılıı

