
1

Efficient All-but-one Random Vector Commitment
from Block Cipher and More

March 5, 2024· Presented by Hongrui Cui

ePrint 2024/097 & Recent progress by Prof. Guo

WENEEDANAME · Vector Commitment from Block Cipher2

Motivations

Post-quantum signatures:
VOLEitH (FAEST, ReSolveD),...
MPCitH (SDitH, Banquet),...

Applications that require all-but-one random vector commitment

2PC: Half-tree (correlated GGM, psudorandom correlated GGM),...
Applications that require AES-based CCR Hash for – ∈ {192, 256}

WENEEDANAME · Vector Commitment from Block Cipher3

Current Construction from PRG and RO

SHAKE SHAKE SHAKE SHAKE

WENEEDANAME · Vector Commitment from Block Cipher4

Current Construction from PRG and RO

SHAKE SHAKE SHAKE SHAKE

WENEEDANAME · Vector Commitment from Block Cipher5

Completeness
A vector commitment scheme VC is (perfectly) correct if for all – ∈ N and N = poly(–) the
following condition holds.

crs← Setup(1–,N), (com, decom, (m0, ...,mN−1))← Commit(crs), ∀¸ ∈ [0,N)
decom¸ ← Open(crs, decom,¸) : Verify(crs, com,¸, decom¸) = (mi)i∈[0,N),i ̸=¸.

WENEEDANAME · Vector Commitment from Block Cipher6

Hiding
The adaptive hiding experiment for VC with N = 2k = poly(–) and stateful A is defined as
follows.
1. crs← Setup(1–,N), b∗ ← {0, 1}
2. (com, decom, (m∗

0, ...,m∗
N−1))← Commit(crs)

3. ¸← A(1–, crs, com)
4. decom¸ ← Open(crs, decom,¸)
5. Letmi = m∗

i for i ∈ [0,N), i ̸= ¸

6. For i = ¸, setmi =

(
m∗

i if b∗ = 0

random if b∗ = 1

7. b← A((mi)i∈[0,N), decom¸)
8. Output 1 (success) if b = b∗, else 0 (failure).

AdvAdpHideVC(A) = |Pr[A wins]− 1
2 |

In the selective hiding experiment,A must choose ¸ prior to receiving com.

WENEEDANAME · Vector Commitment from Block Cipher7

Binding
Let Ext(crs, com,QE)→ (mi)i∈[0,N) be a extraction function.
For N = 2k = poly(–), define the following extractable binding game for a stateful adversaryA.
1. crs← Setup(1–,N)
2. com← A(crs)
3. (m∗

i)i∈[0,N) = Ext(crs, com,QE)
4. (decom¸,¸)← A()
5. Output 1 (success) if Verify(com,¸, decom¸) = (mi)i∈[0,N),i̸=¸ but mi ̸= m∗

i for some i ∈
[0,N), i ̸= ¸. Otherwise, output 0 (failure).

AdvEBVC(A) = Pr[A wins]

WENEEDANAME · Vector Commitment from Block Cipher8

A CCR-based Construction (2024/097)
Let ı : {0, 1}– → {0, 1}– be random permutation
According to [GKYW20], H(x) := ı(ff(x))⊕ ff(x) is a (t, q, ȷ, 2tq2ȷ + q2

2–+1)-CCR

K00 = H(K0), K01 = K00 ⊕ K0

K00 K01

K10 = H(K1), K11 = K10 ⊕ K1

K10 K11

m00 = H(K00)
c00 = H(K00 ⊕ 1)∥H(K00 ⊕ 2)

...

= H(c00∥c01∥c10∥c11∥iv)

H = SHAKE

WENEEDANAME · Vector Commitment from Block Cipher9

Proof of Adaptive Hiding
Step 1: Generate hcom ← {0, 1}2–

Step 2: UseOccr to simulate opening

Security loss: |QRO|
22–

Security loss: "ccr

AdvAdpHideVC(A) ≤ |QRO|
22–

+ "ccr

WENEEDANAME · Vector Commitment from Block Cipher10

Proof of Binding
Step 1: Extract (com1, ..., comN) s.t. SHAKE(com1∥...∥comN∥iv) = hcom

Pr[Ext fails] = Pr[SHAKE collision] ≤ |QRO|
22–

Step 2: For i ∈ [N], extract ri s.t. H(ri ⊕ 1)∥H(ri ⊕ 2) = comi

Pr[Ext fails] ≤ |Qı |·(|Qı |−1)
2 · Pr

24ı(ff(ri ⊕ 1))⊕ ff(ri ⊕ 1) = ı(ff(rj ⊕ 1))⊕ ff(rj ⊕ 1)
∧

ı(ff(ri ⊕ 2))⊕ ff(ri ⊕ 2) = ı(ff(rj ⊕ 2))⊕ ff(rj ⊕ 2)

35

AdvEBVC(A) ≤ |QRO|
22–

+ |Qı |·(|Qı |−1)
2 · 1

22–

WENEEDANAME · Vector Commitment from Block Cipher11

Multi-Tree VC
master seed

...

Tree 1 Tree 2 Tree fi

hcom = SHAKE(h1com∥...∥hcomfi)

WENEEDANAME · Vector Commitment from Block Cipher12

Discussion
Motivation 1 (VC) is a strict super set of Motivation 2 (Half-tree cGGM)
Problem with 2024/097: ı only has 128-bit block size with AES-NI

Algorithm Hccr(1
–, r)

If – = 128: return AES-128
`
C0,ff(r)

´
⊕ ff(r)

If – = 192:
1. rL ← left128(r), rR ← right64(r)
2. return AES-192

`
rR∥C0,ff(rL)

´
⊕ ff(rL)‚‚left64“AES-192`rR∥C1,ff(rL)

´
⊕ ff(rL)

”
If – = 256:
1. rL ← left128(r), rR ← right128(r)
2. return AES-256

`
rR∥C0,ff(rL)

´
⊕ ff(rL)

‚‚AES-256`rR∥C1,ff(rL)
´
⊕ ff(rL)

WENEEDANAME · Vector Commitment from Block Cipher13

Leaf Derivation

Algorithm Hleaf(1
–, r, ‘)

If – = 128:
1. For i = 0 to ‘− 1 do

yi ← AES-128(C2, r+ i)⊕ (r+ i)
2. comL ← AES-128(C3, r) ⊕ r, comR ←

AES-128(C3, r⊕ 1)⊕ r
3. com← comL∥comR
4. return (y0∥...∥y‘−1, com)
If – = 192:
1. rL ← left128(r), rR ← right64(r)
2. For i = 0 to ‘− 1 do

yi ← AES-192(rR∥C2, rL + i)⊕ (rL + i)
3. com1 ← AES-192(rR∥C3, rL) ⊕ rL,

com2 ← AES-192(rR∥C3, rL⊕1)⊕rL⊕1,
com3 ← AES-192(rR∥C3, rL⊕2)⊕ rL⊕2

4. com← com1∥com2∥com3

5. return (y0∥...∥y‘−1, com)

If – = 256:
1. rL ← left128(r), rR ← right128(r)
2. For i = 0 to ‘− 1 do

yi ← AES-256(rR∥C2, rL + i)⊕ (rL + i)
3. com1 ← AES-256(rR∥C3, rL)⊕ rL,

com2 ← AES-256(rR∥C3, rL⊕1)⊕ rL⊕1,
com3 ← AES-256(rR∥C3, rL⊕2)⊕ rL⊕2,
com4 ← AES-256(rR∥C3, rL ⊕ 3)⊕ rL ⊕ 3

4. com← com1∥com2∥com3∥com4

5. return (y0∥...∥y‘−1, com)

WENEEDANAME · Vector Commitment from Block Cipher14

Theoretical Model

Algorithm HE
ccr(1

–, 1n, 1», r)
If n ≤ – ≤ 2n≪ n+ »:
1. rL ← leftn(r), rR ← right–−n(r)
2. zL ← E

`
rR∥[0]»+n−–,ff(rL)

´
⊕ ff(rL)

3. zR ← left–−n
`
E
`
rR∥[1]»+n−–,ff(rL)

´
⊕ ff(rL)

´
// omit if n = –

4. return zL∥zR

–: security parameter, – ∈ {128, 192, 256}
n: block-size of E, n = 128
»: key-size of E, » ∈ {128, 192, 256}
Note that |r| = – (internal node)

WENEEDANAME · Vector Commitment from Block Cipher15

Theoretical Model
Algorithm Hleaf(1

–, 1n, 1», r, ‘)
// –: security parameter; n: block-size of E; »: key-size of E.
// Note that |r| = –.

If n ≤ – ≤ 2n≪ n+ »:
1. rL ← leftn(r), rR ← right–−n(r)
2. For i = 0 to ‘− 1 do

yi ← E(rR∥[2]»+n−–, rL + i)⊕ (rL + i)
3. w← ⌈2–=n⌉
4. For i = 0 to w − 1 do

comi ← E(rR∥[3]»+n−–, rL ⊕ [i]n)⊕ (rL ⊕ [i]n)
5. y ← y0∥...∥y‘−1, com← com0∥...∥comw−1

6. return (y, com)

